Default
Question
Find the derivative of $f(x)$ = $(x^2 + 1)(x^3 − 3x) $
Solution
The correct answer is $5x^4−6x^2−3$
Explanation
As per Product rule,
$\dfrac{d}{dx} (f(x)g(x))$ = $f(x)g′(x) + f′(x)g(x)$
$∴ for f(x)$ = $(x^2 + 1)(x^3 − 3x) $
$f′(x)$ = $(x^2+1)(3x^2−3)$ + $(2x)(x^3−3x)$
= $3x^4−3x^2+3x^2−3$ + $2x^4−6x^2$
= $5x^4−6x^2−3$
e979d060-2f24-11ed-aec7-5405dbb1cb03